Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
J Biomed Nanotechnol ; 18(3): 928-938, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715899

RESUMO

Moniliella wahieum Y12T (M. wahieum Y12T), a fungal isolated from biodiesel caused serious biodiesel contamination and resulting in biofouling and corrosion, especially during storage. Nanoparticles (NPs) composed of silver, copper, iron, and graphene or their binary mixtures were examined as environmental inhibitors against the fungus Moniliella wahieum Y12T, a biodiesel contaminant. Exposure of M. wahieum Y12T and Escherichia coli (E. coli) to low concentrations of Ag-based nanoparticles (from 0.01 to 0.05 mg mL-1) resulted in excellent growth inhibition. The half-maximal inhibitory concentration (IC50) of M. wahieum Y12T by La2O3 NPs was 138 times greater when compared with silver (AgO). The median effective concentration (EC50) of La2O3 NPs on E. coli was 379 times more than M. wahieum Y12T. At this same concentration, E. coli was uninhibited after exposure to the NPs. However, a fluorescein diacetate analysis showed the Ag-based NPs (including AgO, AgO-Fe3O4 and GO-Cu-AgO) significantly reduced the metabolic activity for both of the compared organisms. Compared with other metal oxide NPs, AgO and AgO-Fe3O4 NPs display strong bactericidal effect with higher stability and dispersibility, with the zeta potential of -22.27 mV and poly-dispersity index (PDI) values of 0.36. These results demonstrate the broad-spectrum biological inhibition that occurs with both Ag-based bimetallic and graphene oxide nanoparticles and the combined utilization of Ag-based NPs paves a new way for inhibits the biodegradation of biodiesel.


Assuntos
Basidiomycota , Escherichia coli , Grafite , Nanopartículas Metálicas , Antibacterianos/farmacologia , Bactérias , Basidiomycota/efeitos dos fármacos , Biocombustíveis , Cobre , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Nanopartículas Metálicas/toxicidade , Óxidos , Prata/farmacologia
2.
BMC Microbiol ; 22(1): 9, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986788

RESUMO

BACKGROUND: Peanut stem rot is a serious plant disease that causes great economic losses. At present, there are no effective measures to prevent or control the occurrence of this plant disease. Biological control is one of the most promising plant disease control measures. In this study, Pseudomonas chlororaphis subsp. aurantiaca strain zm-1, a bacterial strain with potential biocontrol properties isolated by our team from the rhizosphere soil of Anemarrhena asphodeloides, was studied to control this plant disease. METHODS: We prepared extracts of Pseudomonas chloroaphis zm-1 extracellular antibacterial compounds (PECEs), determined their antifungal activities by confrontation assay, and identified their components by UPLC-MS/MS. The gene knockout strains were constructed by homologous recombination, and the biocontrol efficacy of P. chlororaphis zm-1 and its mutant strains were evaluated by pot experiments under greenhouse conditions and plot experiments, respectively. RESULTS: P. chlororaphis zm-1 could produce extracellular antifungal substances and inhibit the growth of Sclerotium rolfsii, the main pathogenic fungus causing peanut stem rot. The components of PECEs identified by UPLC-MS/MS showed that three kinds of phenazine compounds, i.e., 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), and the core phenazine, were the principal components. In particular, 1-hydroxyphenazine produced by P. chlororaphis zm-1 showed antifungal activities against S. rolfsii, but 2-hydroxyphenazine did not. This is quite different with the previously reported. The extracellular compounds of two mutant strains, ΔphzH and ΔphzE, was analysed and showed that ΔphzE did not produce any phenazine compounds, and ΔphzH no longer produced 1-hydroxyphenazine but could still produce PCA and phenazine. Furthermore, the antagonistic ability of ΔphzH declined, and that of ΔphzE was almost completely abolished. According to the results of pot experiments under greenhouse conditions, the biocontrol efficacy of ΔphzH dramatically declined to 47.21% compared with that of wild-type P. chlororaphis zm-1 (75.63%). Moreover, ΔphzE almost completely lost its ability to inhibit S. rolfsii (its biocontrol efficacy was reduced to 6.19%). The results of the larger plot experiments were also consistent with these results. CONCLUSIONS: P. chlororaphis zm-1 has the potential to prevent and control peanut stem rot disease. Phenazines produced and secreted by P. chlororaphis zm-1 play a key role in the control of peanut stem rot caused by S. rolfsii. These findings provide a new idea for the effective prevention and treatment of peanut stem rot.


Assuntos
Agentes de Controle Biológico/metabolismo , Doenças das Plantas/prevenção & controle , Pseudomonas/metabolismo , Antibiose/genética , Antifúngicos/análise , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Arachis , Proteínas de Bactérias/genética , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Agentes de Controle Biológico/análise , Mutação , Fenazinas/análise , Fenazinas/metabolismo , Fenazinas/farmacologia , Doenças das Plantas/microbiologia , Pseudomonas/genética
3.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884579

RESUMO

This research investigated the capture of nitrate by magnesium ions in plasma-activated water (PAW) and its antifungal effect on the cell viability of the newly emerged mushroom pathogen Cryptococcus pseudolongus. Optical emission spectra of the plasma jet exhibited several emission bands attributable to plasma-generated reactive oxygen and nitrogen species. The plasma was injected directly into deionized water (DW) with and without an immersed magnesium block. Plasma treatment of DW produced acidic PAW. However, plasma-activated magnesium water (PA-Mg-W) tended to be neutralized due to the reduction in plasma-generated hydrogen ions by electrons released from the zero-valent magnesium. Optical absorption and Raman spectra confirmed that nitrate ions were the dominant reactive species in the PAW and PA-Mg-W. Nitrate had a concentration-dependent antifungal effect on the tested fungal cells. We observed that the free nitrate content could be controlled to be lower in the PA-Mg-W than in the PAW due to the formation of nitrate salts by the magnesium ions. Although both the PAW and PA-Mg-W had antifungal effects on C. pseudolongus, their effectiveness differed, with cell viability higher in the PA-Mg-W than in the PAW. This study demonstrates that the antifungal effect of PAW could be manipulated using nitrate capture. The wide use of plasma therapy for problematic fungus control is challenging because fungi have rigid cell wall structures in different fungal groups.


Assuntos
Antifúngicos/farmacologia , Basidiomycota/efeitos dos fármacos , Magnésio/química , Nitratos/química , Gases em Plasma/farmacologia , Água/farmacologia , Antifúngicos/química , Concentração de Íons de Hidrogênio , Nitratos/isolamento & purificação , Gases em Plasma/química , Água/química
4.
Molecules ; 26(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770820

RESUMO

The chemical composition of extractives in the sapwood (SW), heartwood (HW), knotwood (KW), and branchwood (BW of silver fir (Abies alba Mill.) was analyzed, and their antifungal and antioxidant properties were studied. In addition, the variability of extractives content in a centripetal direction, i.e., from the periphery of the stem towards the pith, was investigated. The extracts were analyzed chemically with gravimetry, spectrophotometry, and chromatography. The antifungal and antioxidative properties of the extracts were evaluated by the agar well diffusion method and the diphenyl picrylhydrazyl radical scavenging method. Average amounts of hydrophilic extractives were higher in KW (up to 210.4 mg/g) and BW (148.6 mg/g) than in HW (34.1 mg/g) and SW (14.8 mg/g). Extractives identified included lignans (isolariciresinol, lariciresinol, secoisolariciresinol, pinoresinol, matairesinol) phenolic acids (homovanillic acid, coumaric acid, ferulic acid), and flavonoids epicatechin, taxifolin, quercetin). Secoisolariciresinol was confirmed to be the predominant compound in the KW (29.8 mg/g) and BW (37.6 mg/g) extracts. The largest amount of phenolic compounds was extracted from parts of knots (281.7 mg/g) embedded in the sapwood and from parts of branches (258.9 mg/g) adjacent to the stem. HW contained more lignans in its older sections. Hydrophilic extracts from knots and branches inhibited the growth of wood-decaying fungi and molds. KW and BW extracts were better free radical scavengers than HW extracts. The results of the biological activity tests suggest that the protective function of phenolic extracts in silver fir wood can also be explained by their antioxidative properties. The results of this study describe BW as a potential source of phenolic extractives in silver fir.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Hidroxibenzoatos/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Madeira/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Basidiomycota/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Fusarium/efeitos dos fármacos , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Lignanas/química , Lignanas/isolamento & purificação , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polyporaceae/efeitos dos fármacos , Schizophyllum/efeitos dos fármacos
5.
J Microbiol ; 59(11): 1031-1043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34613606

RESUMO

An efficient and eco-friendly bioefficacy of potent Tricho-fusant (Fu21) and its green nanosilver formulation against stem rot (Sclerotium rolfsii) in groundnut was established. Fu21 demonstrated higher in-vitro growth inhibition of pathogen with better fungicide tolerance than the parental strains. The green nanosilver particles were synthesized from the extracellular metabolites of Fu21 and characterized for shape (spherical, 59.34 nm in scanning electron microscope), purity (3.00 KeV, energy dispersive X-ray analysis), size (54.3 nm in particle size analyzer), and stability (53.7 mv, zeta). The field efficacy study exhibited that the seedling emergence was high in seeds treated with green nanosilver (minimum inhibitory concentration-[MIC] 20 µg Ag/ml), and a low disease severity index of stem rot during the crop growth was followed by the live antagonist (Fu21) in addition to seed treatment with a fungicide mix under pathogen infestation. The seed quality analysis of harvested pods revealed a high oil content with balanced fatty acid composition (3.10 oleic/linoleic acid ratio) in green nanosilver treatment under pathogen infestation. The residual analysis suggested that green nanosilver applied at the MIC level as seed treatment yielded similar effects as the control for silver residue in the harvested groundnut seeds. The green nanosilver at MIC has a high pod-yield under S. rolfsii infestation, demonstrating green chemistry and sustainability of the nanoproduct.


Assuntos
Arachis/microbiologia , Basidiomycota/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Prata/farmacologia , Trichoderma/química , Antibiose , Basidiomycota/fisiologia , Fungicidas Industriais/química , Nanopartículas/química , Doenças das Plantas/prevenção & controle , Sementes/microbiologia , Prata/química , Trichoderma/efeitos dos fármacos , Trichoderma/fisiologia
6.
Biomolecules ; 11(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572556

RESUMO

In the present study, the polysaccharide-hydrolyzing secretomes of Irpex lacteus (Fr.) Fr. (1828) BCC104, Pycnoporus coccineus (Fr.) Bondartsev and Singer (1941) BCC310, and Schizophyllum commune Fr. (1815) BCC632 were analyzed in submerged fermentation conditions to elucidate the effect of chemically and structurally different carbon sources on the expression of cellulases and xylanase. Among polymeric substrates, crystalline cellulose appeared to be the best carbon source providing the highest endoglucanase, total cellulase, and xylanase activities. Mandarin pomace as a growth substrate for S. commune allowed to achieve comparatively high volumetric activities of all target enzymes while wheat straw induced a significant secretion of cellulase and xylanase activities of I. lacteus and P. coccineus. An additive effect on the secretion of cellulases and xylanases by the tested fungi was observed when crystalline cellulose was combined with mandarin pomace. In I. lacteus the cellulase and xylanase production is inducible in the presence of cellulose-rich substrates but is suppressed in the presence of an excess of easily metabolizable carbon source. These enzymes are expressed in a coordinated manner under all conditions studied. It was shown that the substitution of glucose in the inoculum medium with Avicel provides accelerated enzyme production by I. lacteus and higher cellulase and xylanase activities of the fungus. These results add new knowledge to the physiology of basidiomycetes to improve cellulase production.


Assuntos
Basidiomycota/enzimologia , Carbono/farmacologia , Polissacarídeos/metabolismo , Basidiomycota/efeitos dos fármacos , Reatores Biológicos/microbiologia , Carbono/metabolismo , Glicerol/metabolismo , Glicerol/farmacologia , Hidrólise , Cinética , Polímeros/farmacologia , Polyporales/metabolismo , Açúcares/metabolismo , Triticum/metabolismo
7.
J Nat Prod ; 84(9): 2600-2605, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34469140

RESUMO

Two new bioactive trisubstituted furanones, named pinofuranoxins A and B (1 and 2), were isolated from Diplodia sapinea, a worldwide conifer pathogen causing severe disease. Pinofuranoxins A and B were characterized essentially by NMR and HRESIMS spectra, and their relative and absolute configurations were assigned by NOESY experiments and computational analyses of electronic circular dichroism spectra. They induced necrotic lesions on Hedera helix L., Phaseolus vulgaris L., and Quercus ilex L. Compound 1 completely inhibited the growth of Athelia rolfsii and Phytophthora cambivora, while 2 showed antioomycetes activity against P. cambivora. In the Artemia salina assay both toxins showed activity inducing larval mortality.


Assuntos
Ascomicetos/química , Furanos/farmacologia , Doenças das Plantas/microbiologia , Animais , Artemia/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Fungicidas Industriais/isolamento & purificação , Fungicidas Industriais/farmacologia , Furanos/isolamento & purificação , Hedera/efeitos dos fármacos , Estrutura Molecular , Phaseolus/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Quercus/efeitos dos fármacos , Tunísia
8.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500747

RESUMO

The chemical composition of essential oils (EOs) from dried and fresh flowers of Lavandula angustifolia L. (lavender), named LA 2019 and LA 2020, respectively, grown in central Italy was analyzed and compared by GC and GC-MS. For both samples, 61 compounds were identified, corresponding to 97.9% and 98.1% of the total essential oils. Explorative data analysis, performed to compare the statistical composition of the samples, resulted in a high level of global similarity (around 93%). The compositions of both samples were characterized by 10 major compounds, with a predominance of Linalool (35.3-36.0%), Borneol (15.6-19.4%) and 1,8-Cineole (11.0-9.0%). The in vitro antibacterial activity assay by disk diffusion tests against Bacillus subtilis PY79 and Escherichia coli DH5α showed inhibition of growth in both indicator strains. In addition, plate counts revealed a bactericidal effect on E. coli, which was particularly noticeable when using oil from the fresh lavender flowers at the highest concentrations. An in vitro antifungal assay showed that the EOs inhibited the growth of Sclerotium rolfsii, a phytopathogenic fungus that causes post-harvest diseases in many fruits and vegetables. The antioxidant activity was also assessed using the ABTS free radical scavenging assay, which showed a different antioxidant activity in both EOs. In addition, the potential application of EOs as a green method to control biodeterioration phenomena on an artistic wood painting (XIX century) was evaluated.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Flores/química , Lavandula/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Benzotiazóis/antagonistas & inibidores , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Relação Estrutura-Atividade , Ácidos Sulfônicos/antagonistas & inibidores
9.
Appl Environ Microbiol ; 87(20): e0100521, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347513

RESUMO

The physical environments in which microorganisms naturally reside rarely have homogeneous structure, and changes in their porous architecture may have effects on microbial activities that are not typically captured in conventional laboratory studies. In this study, to investigate the influence of environmental structure on microbial responses to stress, we constructed structured environments with different pore properties (determined by X-ray computed tomography). First, using glass beads in different arrangements and inoculated with the soil yeast Saitozyma podzolica, increases in the average equivalent spherical diameters (ESD) of a structure's porous architecture led to decreased survival of the yeast under a toxic metal challenge with lead nitrate. This relationship was reproduced when yeasts were introduced into additively manufactured lattice structures, comprising regular arrays with ESDs comparable to those of the bead structures. The pore ESD dependency of metal resistance was not attributable to differences in cell density in microenvironments delimited by different pore sizes, supporting the inference that pore size specifically was the important parameter in determining survival of stress. These findings highlight the importance of the physical architecture of an organism's immediate environment for its response to environmental perturbation, while offering new tools for investigating these interactions in the laboratory. IMPORTANCE Interactions between cells and their structured environments are poorly understood but have significant implications for organismal success in both natural and nonnatural settings. This work used a multidisciplinary approach to develop laboratory models with which the influence of a key parameter of environmental structure-pore size-on cell activities can be dissected. Using these new methods in tandem with additive manufacturing, we demonstrated that resistance of yeast soil isolates to stress (from a common metal pollutant) is inversely related to pore size of their environment. This has important ramifications for understanding how microorganisms respond to stress in different environments. The findings also establish new pathways for resolving the effects of physical environment on microbial activity, enabling important understanding that is not readily attainable with traditional bulk sampling and analysis approaches.


Assuntos
Basidiomycota/efeitos dos fármacos , Chumbo/toxicidade , Nitratos/toxicidade , Poluentes do Solo/toxicidade , Resistência a Medicamentos , Porosidade , Solo
10.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201482

RESUMO

Fusarium wilt of potato is one of the most common diseases of potato in China, and is becoming a serious threat in potato production. It has been reported that osthole from Cnidium monnieri (L.) Cusson can inhibit plant pathogens. Here, we test the anti-fungal activity of C. monnieri osthole against Fusarium oxysporum in potatoes. The results showed that at a concentration of 5 mg/mL, osthole was able to obviously inhibit mycelial growth of F. oxysporum. We found that osthole caused changes of mycelial morphology, notably hyphal swelling and darkening. Osthole significantly reduced the spore germination of Fusarium by 57.40%. In addition, osthole also inhibited the growth of other pathogens such as Fusarium moniliforme J. Sheld, Thanatephorus cucumeris Donk, and Alternaria alternata (Fr.) Keissl, but not Alternaria solani Jonesetgrout and Valsa mali Miyabe and G. Yamada. Our results suggest that osthole has considerable potential as an agent for the prevention and treatment of potato Fusarium wilt.


Assuntos
Cnidium/química , Cumarínicos/administração & dosagem , Fusarium/efeitos dos fármacos , Micélio/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Micélio/citologia , Solanum tuberosum/microbiologia
11.
Mycoses ; 64(8): 817-822, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091966

RESUMO

OBJECTIVES: To investigate the occurrence of Trichosporon asahii fungemia among critically ill COVID-19 patients. METHODS: From 1 July to 30 September 2020, cases of T asahii fungemia (TAF) in a Brazilian COVID-19 referral centre were investigated. The epidemiology and clinical courses were detailed, along with a mycological investigation that included molecular species identification, haplotype diversity analysis and antifungal susceptibility testing. RESULTS: Five critically ill COVID-19 patients developed TAF in the period. All five patients had common risk conditions for TAF: central venous catheter at fungemia, previous exposure to broad-spectrum antibiotics, prior echinocandin therapy and previous prolonged corticosteroid therapy. The average time of intensive care unit hospitalisation previous to the TAF episode was 23 days. All but one patient had voriconazole therapy, and TAF 30-day mortality was 80%. The five T asahii strains from the COVID-19 patients belonged to 4 different haplotypes, mitigating the possibility of skin origin and cross-transmission linking the 5 reported episodes. The antifungal susceptibility testing revealed low minimal inhibitory concentrations for azole derivatives. CONCLUSIONS: Judicious prescription of antibiotics, corticosteroids and antifungals needs to be discussed in critically ill COVID-19 patients to prevent infections by hard-to-treat fungi like T asahii.


Assuntos
Corticosteroides/administração & dosagem , Antifúngicos/administração & dosagem , Basidiomycota/isolamento & purificação , COVID-19/complicações , Superinfecção/complicações , Tricosporonose/complicações , Corticosteroides/farmacologia , Idoso , Antifúngicos/farmacologia , Basidiomycota/classificação , Basidiomycota/efeitos dos fármacos , Basidiomycota/genética , Brasil/epidemiologia , COVID-19/epidemiologia , Candidemia/complicações , Feminino , Fungemia/complicações , Haplótipos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Filogenia , Fatores de Risco , Superinfecção/epidemiologia , Tricosporonose/epidemiologia
12.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920885

RESUMO

Dietary intervention in type 2 diabetes mellitus (T2DM) is a hotspot in international research because of potential threats to human health. Phellinus baumii, a wild fungus traditionally used as a food and medicine source, is now cultivated in certain East Asian countries, and is rich in polyphenols, which are effective anti-inflammatory ingredients useful in treatment of T2DM, with fewer side effects than drugs. To examine the hypoglycaemic effects of Phellinus baumii phenolics (PPE), the metabolite profiles of T2DM mice induced by streptozotocin after PPE intervention were systematically analyzed. Here, 10 normal mice were given normal saline as control group, and 50 model mice were randomly assigned to five groups and daily intragastric administrated with saline, metformin (100 mg/kg), and PPE (50, 100, 150 mg/kg of body weight), for 60 days. The pro-inflammatory factor contents of lipopolysaccharide stimulation of RAW 264.7 cells were decreased in a dose-dependent manner after PPE treatment, we propose that PPE could exert anti-inflammatory properties. PPE could also effectively reduce blood glucose levels, increased insulin sensitivity, and improved other glucolipid metabolism. Q-PCR results suggested that the hypoglycemic effects of PPE might be through activating IRS1/PI3K/AKT pathway in diabetic mice. These results suggest that PPE has strong potential as dietary components in the prevention or management of T2DM.


Assuntos
Phellinus/química , Fenóis/uso terapêutico , Animais , Basidiomycota/efeitos dos fármacos , Basidiomycota/patogenicidade , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Lipopolissacarídeos/fisiologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase , Células RAW 264.7
13.
Mil Med Res ; 8(1): 19, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750466

RESUMO

BACKGROUND: Invasive Trichosporon asahii (T. asahii) infection frequently occurs with a high mortality in immunodeficient hosts, but the pathogenesis of T. asahii infection remains elusive. Circular RNAs (circRNAs) are a type of endogenous noncoding RNA that participate in various disease processes. However, the mechanism of circRNAs in T. asahii infection remains completely unknown. METHODS: RNA sequencing (RNA-seq) was performed to analyze the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in THP-1 cells infected with T. asahii or uninfected samples. Some of the RNA-seq results were verified by RT-qPCR. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the differentially expressed mRNAs. A circRNA-miRNA-mRNA network was constructed and verified by dual-luciferase reporter assay and overexpression experiments. RESULTS: A total of 46 circRNAs, 412 mRNAs and 47 miRNAs were differentially expressed at 12 h after T. asahii infection. GO and KEGG analyses showed that the differentially expressed mRNAs were primarily linked to the leukocyte migration involved in the inflammatory response, the Toll-like receptor signaling pathway, and the TNF signaling pathway. A competing endogenous RNA (ceRNA) network was constructed with 5 differentially expressed circRNAs, 5 differentially expressed miRNAs and 42 differentially expressed mRNAs. Among them, hsa_circ_0065336 was found to indirectly regulate PTPN11 expression by sponging miR-505-3p. CONCLUSIONS: These data revealed a comprehensive circRNA-associated ceRNA network during T. asahii infection, thus providing new insights into the pathogenesis of the T. asahii-host interactions.


Assuntos
Basidiomycota/efeitos dos fármacos , MicroRNAs/farmacologia , RNA Circular/farmacologia , RNA Mensageiro/farmacologia , Tricosporonose/terapia , Basidiomycota/patogenicidade , Humanos , MicroRNAs/uso terapêutico , RNA Circular/uso terapêutico , RNA Mensageiro/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
14.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673430

RESUMO

To discover new compounds with broad spectrum and high activity, we designed a series of novel benzamides containing 1,2,4-oxadiazole moiety by bioisosterism, and 28 benzamides derivatives with antifungal activity were synthesized. These compounds were evaluated against four fungi: Botrytis cinereal, FusaHum graminearum, Marssonina mali, and Thanatephorus cucumeris. The results indicated that most of the compounds displayed good fungicidal activities, especially against Botrytis cinereal. For example, 10a (84.4%), 10d (83.6%), 10e (83.3%), 10f (83.1%), 10i (83.3%), and 10l (83.6%) were better than pyraclostrobin (81.4%) at 100 mg/L. In addition, the acute toxicity of 10f to zebrafish embryo was 20.58 mg/L, which was classified as a low-toxicity compound.


Assuntos
Antifúngicos/farmacologia , Benzamidas/farmacologia , Oxidiazóis/farmacologia , Peixe-Zebra/microbiologia , Animais , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Benzamidas/toxicidade , Botrytis/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/microbiologia , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxidiazóis/síntese química , Oxidiazóis/química , Oxidiazóis/toxicidade , Peixe-Zebra/embriologia
15.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33688802

RESUMO

Introduction. Trichosporon asahii has been recognized as an opportunistic agent having a limited sensitivity to antifungal treatment.Hypothesis/Gap Statement. Molecular mechanisms of azole resistance have been rarely reported for Trichosproron asahii. Similar to other fungi, we hypothesized that both ERG11 gene mutation and efflux pumps genes hyper-expression were implicated.Aim. The current work aimed to study the sensitivity of clinical T. asahii isolates to different antifungal agents and to explore their resistance mechanisms by molecular methods including real-time PCR and gene sequencing.Methods. The sensitivity of T. asahii isolates to fluconazole, amphotericin B and voriconazole was estimated by the Etest method. Real-time PCR was used to measure the relative expression of Pdr11, Mdr and ERG11 genes via the ACT1 housekeeping gene. Three pairs of primers were also chosen to sequence the ERG11 gene. This exploration was followed by statistical study including the receiver operating characteristic (ROC) curve analysis to identify a relationship between gene mean expression and the sensitivity of isolates.Results. In 31 clinical isolates, the resistance frequencies were 87, 16.1 and 3.2 %, respectively, for amphotericin B, fluconazole and voriconazole. Quantitative real-time PCR demonstrated that only Mdr over-expression was significantly associated with FCZ resistance confirmed by univariate statistical study and the ROC curve analysis (P <0.05). The ERG11 sequencing revealed two mutations H380G and S381A in TN325U11 (MIC FCZ=8 µg ml-1) and H437R in TN114U09 (MIC FCZ=256 µg ml-1) in highly conserved regions (close to the haem-binding domain) but their involvement in the resistance mechanism has not yet been assigned.Conclusion. T. asahii FCZ resistance mechanisms are proven to be much more complex and gene alteration sequence and/or expression can be involved. Only Mdr gene over-expression was significantly associated with FCZ resistance and no good correlation was observed between FCZ and VCZ MIC values and relative gene expression. ERG11 sequence alteration seems to play a major role in T. asahii FCZ resistance mechanism but their involvement needs further confirmation.


Assuntos
Antifúngicos/farmacologia , Basidiomycota , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Tricosporonose/microbiologia , Anfotericina B/farmacologia , Basidiomycota/efeitos dos fármacos , Basidiomycota/genética , Fluconazol/farmacologia , Humanos , Voriconazol/farmacologia
16.
Commun Biol ; 4(1): 261, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637875

RESUMO

Here, we report the identification and characterization of the first proton channels from fungi. The fungal proteins are related to animal voltage-gated Hv channels and are conserved in both higher and lower fungi. Channels from Basidiomycota and Ascomycota appear to be evolutionally and functionally distinct. Representatives from the two phyla share several features with their animal counterparts, including structural organization and strong proton selectivity, but they differ from each other and from animal Hvs in terms of voltage range of activation, pharmacology, and pH sensitivity. The activation gate of Hv channels is believed to be contained within the transmembrane core of the protein and little is known about contributions of peripheral regions to the activation mechanism. Using a chimeragenesis approach, we find that intra- and extracellular peripheral regions are main determinants of the voltage range of activation in fungal channels, highlighting the role of these overlooked components in channel gating.


Assuntos
Ascomicetos/metabolismo , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Animais , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Basidiomycota/efeitos dos fármacos , Basidiomycota/genética , Evolução Molecular , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Mecanotransdução Celular , Potenciais da Membrana , Domínios e Motivos de Interação entre Proteínas , Prótons , Xenopus
17.
J Mycol Med ; 31(2): 101123, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33639444

RESUMO

Papiliotrema laurentii (formerly Cryptococcus laurentii) and Papiliotrema albidus (formerly Cryptococcus albidus) are yeast-like environmental fungi which are largely considered as non-pathogenic to humans. However, invasive infections caused by P. laurentii have recently been reported in some patients with an impaired immune system. Here, we describe the first case of P. laurentii fungemia in a premature, very low-birth-weight neonate in Kuwait and the Middle East. Repeated bloodstream isolates were obtained and were tentatively identified as P. laurentii by Vitek 2 yeast identification system. The identification of the yeast isolates as P. laurentii was confirmed by PCR-sequencing of ribosomal DNA (rDNA). Antifungal susceptibility testing data showed that the isolates were susceptible to amphotericin B, fluconazole and voriconazole but appeared resistant to caspofungin. The baby was successfully treated with liposomal amphotericin B.


Assuntos
Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Basidiomycota/efeitos dos fármacos , Basidiomycota/genética , Fungemia/diagnóstico , Fungemia/tratamento farmacológico , Adulto , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Basidiomycota/classificação , Basidiomycota/patogenicidade , DNA Ribossômico/genética , Feminino , Fungemia/microbiologia , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Kuweit , Masculino , Técnicas de Tipagem Micológica , Resultado do Tratamento
18.
Microbiol Res ; 246: 126721, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581445

RESUMO

Microbial volatile organic compounds (mVOCs) have great potential in plant ecophysiology, yet the role of belowground VOCs in plant stress management remains largely obscure. Analysis of biocontrol producing VOCs into the soil allow detailed insight into their interaction with soil borne pathogens for plant disease management. A root interaction trial was set up to evaluate the effects of VOCs released from Trichoderma viride BHU-V2 on soil-inhabiting fungal pathogen and okra plant growth. VOCs released into soil by T. viride BHU-V2 inhibited the growth of collar rot pathogen, Sclerotium rolfsii. Okra plants responded to VOCs by increasing the root growth (lateral roots) and total biomass content. VOCs exposure increased defense mechanism in okra plants by inducing different enzyme activities i.e. chitinase (0.89 fold), ß-1,3-glucanase (0.42 fold), peroxidase (0.29 fold), polyphenol oxidase (0.33 fold) and phenylalanine lyase (0.7 fold) when inoculated with S. rolfsii. In addition, T. viride BHU-V2 secreted VOCs reduced lipid peroxidation and cell death in okra plants under pathogen inoculated condition. GC/MS analysis of VOCs blend revealed that T. viride BHU-V2 produced more number of antifungal compounds in soil medium as compared to standard medium. Based on the above observations it is concluded that okra plant roots perceive VOCs secreted by T. viride BHU-V2 into soil that involved in induction of plant defense system against S. rolfsii. In an ecological context, the findings reveal that belowground microbial VOCs may play an important role in stress signaling mechanism to interact with plants.


Assuntos
Abelmoschus/efeitos dos fármacos , Abelmoschus/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Hypocreales/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Abelmoschus/enzimologia , Agentes de Controle Biológico/farmacologia , Morte Celular/efeitos dos fármacos , Hypocreales/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
19.
Eur J Med Chem ; 214: 113230, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581553

RESUMO

To continue our ongoing studies on discovery of new potent antifungal leads, 43 novel pyrazole-aromatic containing carboxamides were rationally designed and synthesized. Bioassays indicated that most target compounds displayed good in vitro antifungal activities against Botrytis cinerea, Rhizoctonia cerealis and Sclerotinia sclerotiorum and in vivo antifungal activity against R. solani. Compound 11ea exhibited the most significant in vitro activity against R. cerealis (EC50 = 0.93 µg/mL) with about 2-fold more potent than a previously reported lead compound A1 (EC50 = 2.01 µg/mL), and about 11-fold more potent than the positive control/commercial succinate dehydrogenase inhibitor thifluzamide (EC50 = 23.09 µg/mL). Structure-activity relationship analysis and molecular docking simulations indicated that the presence of difluoromethyl pyrazole-(m-benzene) carboxamide scaffold obviously increased the antifungal activity. The further enzymatic bioassay showed that both thifluzamide and compound 11ea displayed excellent SDH inhibitory effects, and fluorescence quenching analysis suggested that they may share the same target SDH.


Assuntos
Antifúngicos/farmacologia , Basidiomycota/enzimologia , Derivados de Benzeno/farmacologia , Inibidores Enzimáticos/farmacologia , Pirazóis/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Antifúngicos/síntese química , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Botrytis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Succinato Desidrogenase/metabolismo
20.
Sci Rep ; 11(1): 3842, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589657

RESUMO

Currently, silver nanoparticles (AgNPs) constitute an interesting field of study in medicine, catalysis, optics, among others. For this reason, it has been necessary to develop new methodologies that allow a more efficient production of AgNPs with better antimicrobial and biological properties. In this research growth time effects Anamorphous Bjerkandera sp. R1 and the silver nitrate (AgNO3) concentration over AgNPs synthesis were studied. Through the protocol used in this work, it was found that the action of the capping proteins on the surface of the mycelium played a determining role in the reduction of the Ag+ ion to Ag0 nanoparticles producing a particle size that oscillated between 10 and 100 nm. The progress of the reaction was monitored using visible UV-Vis spectroscopy and the synthesized AgNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared radiation (FTIR) spectroscopy. The best synthetic properties were found at 1 mM of AgNO3 concentration, growth time of 8 days, and reaction time of 144 h. Nanometals obtention from microorganisms could be considered as a new method of synthesis, due to reducing abilities of metal ions through its enzymatic system and represents low-cost synthesis that reduces the generation of harmful toxic wastes.


Assuntos
Basidiomycota/metabolismo , Nanopartículas Metálicas , Prata/metabolismo , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Nitrato de Prata/metabolismo , Nitrato de Prata/farmacologia , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...